

RECENT CLIMATE CHANGE IN LATVIA

ZANITA AVOTNIECE (zanita.avotniece@lvgmc.lv) SVETLANA AŅISKEVIČA (svetlana.aniskevica@lvgmc.lv)

LATVIAN ENVIRONMENT, GEOLOGY AND METEOROLOGY CENTRE FORECASTING AND CLIMATE DEPARTMENT CLIMATE AND METHODOLOGICAL DIVISION 19.05.2016

SURFACE OBSERVATION DATA USED FOR THE ANALYSIS

Meteorological parameters:

- Minimum, maximum and mean air temperature
- Precipitation amount
- Wind speed
- Wind direction

Time period covered:

- 1961-2010
- 1966-2010 for wind speed
 Time steps of observation
 data:
- Daily data
- SYNOP observation time data for wind direction

Area coverage – 49 weather stations:

- 48 WS for precipitation
- 22 WS for temperature parameters
- 22 WS for wind parameters

Location of the meteorological observation stations used for the analysis

QUALITY CONTROL OF ARCHIVED OBSERVATION DATA

- Archived observation data have been put under extensive quality control performed on different levels of the analysis:
- 1. Initial manual quality control of the data performed by in-house experts
- 2. Data homogenization for the data series containing meteorologically unexplainable shifts or jumps
- Final data quality control and bias assessment of the interpolated values against E-OBS gridded observation dataset performed by the experts from the FMI

During data extraction from the electronic observation archive database several issues with data quality have been detected and corrected for

Due to changes in observation methods and instruments over time, shifts and jumps in wind speed observation data have been detected \rightarrow a simple homogenization of the data series has been performed

- The corrected and homogenized data have been compared to the <u>E-OBS gridded observation dataset</u> for Europe.
- Main conclusions from the comparison of temperature parameters:
- The differences are generally quite gentle, of the order of magnitude of 0-0.3 °C. The analyses are generally of a good quality.
- More geographical details can be seen from LEGMC data, which is due to the larger number of observations utilized.

Larger differences occurring near the eastern boundary of the country might be artefacts: in winter the values are by 0.5 °C warmer than the E-OBS estimates, but in summer negative anomalies of a similar magnitude can be observed.

CLIMATE INDICES

For the assessment of extreme climate events and their changes under the conditions of recent climate change, several climate indices following the recommendations of <u>ECA&D</u> have been calculated from the daily observation data

- 20 temperature indices
- 10 precipitation indices
- 12 wind indices

CLIMATE INDICES

Temperature indices		Precipitation indices		Wind indices		
FD	Frost days	RX1day	Maximum 1-day precipitation amount	FG	Annual mean wind speed	
SU	Summer days	RX5day	Maximum 5-day precipitation amount	FGCalm	Number of days with calm winds	
ID	Ice days	SDII	Simplified daily intensity index	FG6Bft	Number of days with strong winds	
TR	Tropical nights	R10	Number of days with heavy precipitation	FXx	Annual maximum wind gusts	
GSL	Growing season length	R20	Number of days with very heavy precipitation	DDnorth	Number of days with prevailing northerly winds	
TN10p	Cold nights	CDD	Number of consecutive dry days	DDsouth	Number of days with prevailing southerly winds	
TX10p	Cold day-times	CWD	Number of consecutive days with precipitation	DDwest	Number of days with prevailing westerly winds	
TG10p	Cold days	R95p	Very wet days	DDeast	Number of days with prevailing easterly winds	
TN90p	Warm nigts	R99p	Extremely wet days	DMnorth	Number of days with maximum wind speed observed with northerly direction winds	
TX90p	Warm day-times	PRCPTOT	Total annual precipitation on wet days	DMsouth	Number of days with maximum wind speed observed with southerly direction winds	
TG90p	Warm days			DMwest	Number of days with maximum wind speed observed with westerly direction winds	
TGn	Minimum of the daily mean temperature			DMeast	Number of days with maximum wind speed observed with easterly direction winds	
TGx	Maximum of the daily mean temperature					

TNn

TNx TXn

TXx

WSDI

CSDI

DTR

Minimum of the daily minimum temperature

Maximum of the daily minimum temperature

Minimum of the daily maximum temperature

Maximum of the daily maximum temperature

Warm-spell duration indicator

Cold-spell duration indicator Diurnal temperature range The calculation of indices has been performed by using the RClimDex tool recommended by the ECA&D project team.

Indices have been calculated from quality-checked daily observation data, following a built-in routine of the tool.

STATION DATA VS GRIDDED DATA

- Official meteorological observations performed only in fixed points – official meteorological observation stations
- Scientifically sound interpolation of data obtained from the meteorological weather stations performed in order to provide information also in points not covered by the observation network

BASIC STATISTICAL ANALYSIS

Descriptive statistics and quality control taking into account WMO recommendations:

- Monthly, yearly means, minimums, maximums and sums
- Multi-year monthly and yearly means, minimums and maximums

$$\bar{T}_m = \frac{\sum_{i=1}^n T_{d_i}}{n} \quad \bar{T}_y = \frac{\sum_{i=1}^{12} T_{m_i}}{12}$$

Monthly mean values calculated only *if*:

- no more than 10 daily values missing
- 5 or more consecutive daily values are missing

Yearly mean values calculated only if:

no monthly values missing

$$\bar{P}_m = \sum_{i=1}^n P_{d_i} \qquad \bar{P}_y = \sum_{i=1}^n P_{m_i}$$

Monthly and yearly sums calculated only if:

• no daily values missing

BASIC STATISTICAL ANALYSIS

Detection of trends:

Mann-Kendall test

$$Z = \begin{cases} \frac{S-1}{\sqrt{Var(S)}} & \text{if } S > 0\\ 0 & \text{if } S = 0\\ \frac{S+1}{\sqrt{Var(S)}} & \text{if } S < 0 \end{cases}$$

• Linear regression slope estimation

$$b = \frac{\sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{N} (x_i - \bar{x})^2}$$

Coefficient of determination

$$R^2 = 1 - \frac{SS_{RES}}{SS_{TOT}}$$

EXTREME VALUE ANALYSIS

EXTREME VALUE ANALYSIS

Block maxima method:

- Generalized extreme value distribution fits the data

$$G(x) = \begin{cases} \exp\left\{-\left[1+\xi\left(\frac{x-\mu}{\sigma}\right)\right]^{\frac{-1}{\xi}}\right\} & \text{if } \xi \neq 0\\ \exp\left\{-\exp\left[-\left(\frac{x-\mu}{\sigma}\right)\right]\right\} & \text{if } \xi = 0 \end{cases}$$

- Parameters estimation, hypothesis testing
- Return levels amounts that might be exceeded once in T years

$$x_T = \begin{cases} \mu - \frac{\sigma}{\xi} \left[1 - \{ -\log(1 - 1/T) \}^{-\xi} \right] & \text{if } \xi \neq 0 \\ \mu - \sigma \log\{ -\log(1 - 1/T) \} & \text{if } \xi = 0 \end{cases}$$

EXTREME VALUE ANALYSIS

Peak over threshold method:

- Generalized Pareto distribution fits the data

$$H_{\xi,\sigma}(y) = \begin{cases} 1 - \left(1 + \frac{\xi}{\sigma}y\right)^{-1/\xi} & \text{if } \xi \neq 0\\ 1 - e^{-\frac{y}{\sigma}} & \text{if } \xi = 0 \end{cases}$$

- Parameters estimation, hypothesis testing
- Return levels amounts that might be exceeded once in N years

$$x_N = \begin{cases} u + \frac{\sigma}{\xi} \left[(Nn_y \zeta_u)^{\xi} - 1 \right] & \text{if } \xi \neq 0 \\ u + \sigma \log (Nn_y \zeta_u) & \text{if } \xi = 0 \end{cases}$$

Kriging with external drift

 Spatial dependencies can be expressed as deterministic trend and stochastic component

$$Z(s) = \mu(s) + \varepsilon(s)$$

Linear trends using explanatory variables

 $Z(x, y, h, c_t) = \beta_0 + \beta_1 x + \beta_2 y + \beta_3 x^2 + \beta_4 y^2 + \beta_5 x y + \beta_6 h + \beta_7 c_t$ $Z(x, y, h, c_p) = \beta_0 + \beta_1 x + \beta_2 y + \beta_3 x^2 + \beta_4 y^2 + \beta_5 x y + \beta_6 h + \beta_7 c_p$ $Z(x, y, h, d) = \beta_0 + \beta_1 x + \beta_2 y + \beta_3 x^2 + \beta_4 y^2 + \beta_5 x y + \beta_6 h + \beta_7 d$

100

Explanatory variables

Mean elevation

Gorczynski continentality

Distance from the Baltic Sea and the Gulf of Riga

Gams' continentality

Validation:

statistical indicators of the differences
 between predicted values and the values
 actually observed

	Temperature			Precipitation	Wi	nd
	Mean	Min	Max	Sum	Mean	Gusts
Mean error	0.00	0.00	0.00	-0.27	0.01	0.02
MAB	0.01	0.04	0.02	7.91	0.05	0.08
RMSE	0.03	0.07	0.04	10.58	0.08	0.12

Output files

- -739 grid cells
- Cell's coordinates in metric LKS-92 system
- Parameter value

X∄	5-	⊘		Mean_t_1961_1	_10csv - Excel		?	★ - ■	×
FII	LE HOI	ME INSERT	T PAGE LAY	OUT FORM	ULAS DAT	A REVIEW	/ VIEW	Svetlana 👻	
Past Clipt	te 💉	Calibri • B I U • Font		= = = = + = = = + i∈ ≫ + ignment 5	Number	Conditional Fo Format as Tabl Cell Styles * Styles	rmatting -	Cells Editing	
К33	3 •	· = 🗙	✓ fx						~
	А	В	С	D	E	F	G	н	
1	X."Y"."Pr	edicted"							70
2	660740.	391985.16	7558.01988	2.2					
3	640740.	391985.17	7558.01988	2.1.7					
4	650740.	391985.17	7558.01988	2.1.8					
5	660740.	391985,17	7558.01988	2,1.7					
6	670740.	, 391985,17	7558.01988	, 2,1.7					
7	680740.	391985,17	7558.01988	2,1.7					
8	640740.	, 391985,18	7558.01988	2,1.5					
9	650740.	, 391985,18	7558.01988	2,1.6					
10	660740.	, 391985,18	7558.01988	2,1.5					
11	670740.	391985,18	7558.01988	2,1.4					
12	680740.	391985,18	7558.01988	2,1.4					
13	690740.	391985,18	7558.01988	2,1.5					
14	700740.	391985,18	7558.01988	2,1.5					
15	710740.	391985,18	7558.01988	2,1.6					
16	720740.	391985,18	7558.01988	2,1.7					
17	730740.	391985,18	7558.01988	2,1.7					
18	630740.	391985,19	7558.01988	2,1.4					
19	640740.	391985,19	7558.01988	2,1.4					
20	650740.	391985,19	7558.01988	2,1.5					
21	660740.	391985,19	7558.01988	2,1.5					
22	670740.	391985,19	7558.01988	2,1.3					
23	680740.	391985,19	7558.01988	2,1.4					
24	690740.	391985,19	7558.01988	2,1.3					
25	700740.	391985,19	7558.01988	2,1.4					
26	710740	Man + 10							
		wiean_t_19	01_1_10_	•	:				P

RECENT CLIMATE CHANGE IN LATVIA

AIR TEMPERATURE

Annual mean air temperature (°C) over the period 1961-2010

 Minimum monthly mean temperature — Average monthly mean temperature _ -Maximum monthly mean temperature

14.0

12.0

10.0

8.0

6.0

4.0

2.0

0.0

-2.0

Air temperature (°C)

OBSERVED TRENDS IN TEMPERATURE VARIABLES

Index or variable	MK test statistics	Index name	MK test statistics	Index name	MK test statistics
TNmean	3.22	TGmean	3.48	TXmean	3.35
TNn	1.33	TGn	1.29	TXn	1.13
TNx	2.87	TGx	1.58	ТХх	1.61
FD	-2.38	DTR	0.07	SU	1.56
ID	-2.21	GSL	0.45	TR	2.48
CSDI	-2.25		•	WSDI	2.92

Very significant tendency of increase (Mann-Kendall test statistics ≥ 3.3) Significant tendency of increase (Mann-Kendall test statistics ≥ 2.6) Substantial tendency of increase (Mann-Kendall test statistics ≥ 1.6)

Very significant tendency of decrease (Mann-Kendall test statistics \leq -3.3) Significant tendency of decrease (Mann-Kendall test statistics \leq -2.6) Substantial tendency of decrease (Mann-Kendall test statistics \leq -1.6)

SUMMER DAYS

Mean number of summer days (maximum air temperature > +25°C) over the period 1961-2010

WARM SPELL DURATION

Mean length of the observed warm spells (at least 6 consecutive days with maximum temperature above the 90th percentile of the reference period) over the period 1961-2010

ICE DAYS

Mean number of ice days (maximum air temperature < 0°C) over the period 1961-2010

COLD SPELL DURATION

Mean length of the observed cold spells (at least 6 consecutive days with minimum temperature below the 10th percentile of the reference period) over the period 1961-2010

OBSERVED TRENDS IN TEMPERATURE VARIABLES

	Observation station	Frost days	Ice days	Tropical nights	Warm spell duration
	Ainazi	-1.64	-1.83	2.53	1.24
	Aluksne	-3.24	-2.14	1.73	2.8
	Bauska	-2.2	-2.02	2.35	0.25
	Daugavpils	-1.81	-1.87	2.16	2.99
	Dobele	-2.94	-2.37	1.78	3.31
	Gulbene	-2.53	-2.49	2	2.83
	Jelgava	-1.11	-2.32	3.09	1.97
	Kolka	-2.43	-1.81	2.34	3.15
	Liepaja	-1.71	-1.85	2.51	3.08
	Mersrags	-1.29	-1.93	1.01	3.61
	Pavilosta	-2.54	-2.05	1.8	2.93
	Priekuli	-3.05	-2.48	2.43	2.14
	Rezekne	-2.6	-2.17	2.45	2.68
	Riga	-3.82	-2.04	2.15	2.34
ays	Rujiena	-2.25	-2.24	2.25	1.84
r of d	Saldus	-2.19	-2.07	-0.27	2.06
Numbe	Skriveri	-2.19	-2.23	1.74	2.99
	Skulte	-2.23	-2.2	3.29	1.62
	Stende	-1.33	-1.93	-0.54	1.9
	Ventspils	-2.65	-2.25	3.1	2.25
	Zilani	-2.26	-2.2	1.11	2.85
	Zoseni	-3.22	-1.7	1.22	1.94

RETURN LEVELS OF EXTREME TEMPERATURE VALUES

Daily minimum air temperature return levels calculated over the period 1961-2010 – the temperature value that might be exceeded once in 100 years

PRECIPITATION

Annual mean precipitation amount (mm) over the period 1961-2010

PRECIPITATION

OBSERVED TRENDS IN PRECIPITATION VARIABLES

Index name	MK test statistics	Index name	MK test statistics
CDD	0.39	R10	2.69
CWD	1.6	R20	2.83
PRCPTOT	2.3	R95p	2.91
SDII	3.01	R99p	2.02
		Rmax1day	1.31
		Rmax5day	1.66

Very significant tendency of increase (Mann-Kendall test statistics ≥ 3.3) Significant tendency of increase (Mann-Kendall test statistics ≥ 2.6) Substantial tendency of increase (Mann-Kendall test statistics ≥ 1.6)

Very significant tendency of decrease (Mann-Kendall test statistics \leq -3.3) Significant tendency of decrease (Mann-Kendall test statistics \leq -2.6) Substantial tendency of decrease (Mann-Kendall test statistics \leq -1.6)

PRECIPITATION INDICES – DAILY INTENSITY

Mean value (mm/day) of the simplified daily intensity index (SDII) in the period 1961-202

PRECIPITATION INDICES – HEAVY PRECIPITATION

Mean number of days with heavy precipitation (R10) in the period 1961-2010

PRECIPITATION INDICES – DRY PERIODS

Mean number of consecutive dry days (CDD) in the period 1961-2010

WIND SPEED AND DIRECTION

Annual mean wind speed (m/s) and prevailing wind directions in the period 1961-2010

WIND SPEED

DAYS WITH CALM WIND

Mean number of calm days (FGcalm) in the period 1961-2010

MAXIMUM WIND GUSTS

Averaged annual maximum wind gusts in the period 1961-2010

OBSERVED TRENDS IN WIND VARIABLES

Index name	MK test statistics	Index name	MK test statistics	Index name	MK test statistics
FG	-6.8	DDeast	-0.55	DMeast	0.23
FGcalm	4.37	DDsouth	-0.87	DMsouth	0.48
FG6Bft	-3.84	DDwest	1.18	DMwest	1.72
FXx	-0.05	DDnorth	-0.42	DMnorth	-0.84

Very significant tendency of increase (Mann-Kendall test statistics ≥ 3.3) Significant tendency of increase (Mann-Kendall test statistics ≥ 2.6) Substantial tendency of increase (Mann-Kendall test statistics ≥ 1.6)

Very significant tendency of decrease (Mann-Kendall test statistics \leq -3.3) Significant tendency of decrease (Mann-Kendall test statistics \leq -2.6) Substantial tendency of decrease (Mann-Kendall test statistics \leq -1.6)

FURTHER WORK WITHIN THE PROJECT

- All observation data and indices representing recent climate change submitted to the experts
- Finalization of return value calculation
- Calculation of future projections in absolute terms and future climate indices
- Participation in adaptation monitoring system development
- Written report and analysis on recent climate change and projected changes in the future