Consistent reporting of N₂O emissions from managed organic soils and other sources in LULUCF sector

Training seminar on QA/QC procedures in Land use, Land-use change and Forestry sector

18th – 19th May, 2015 Riga, Latvia

Aldis Butlers Latvian State Forestry Research Institute 'Silava' Riga street 111, Salaspils, LV-2169, Latvia *aldis.butlers@silava.lv*

Definition of Consistency

- The same data sources and assumptions are used across gases and years of the inventory.
- The same methodology has been used for all years of a time-series.
- Data (activity data and measured data) have been collected using the same method for all years of the time-series.
- Appropriate splicing techniques in accordance with the good practice guidance have been applied in cases of inconsistencies of time-series or changes in methodologies.

Sources of N₂O emissions in LULUCF

sector

• Direct N₂O emissions:

from drained organic soils on:

- forest land,
 - cropland,
- grassland,
- settlements,
- wetlands (peat extraction);
- from mineral soils due to land-use change to:
 - cropland,
 - settlements.

• Indirect N₂O emissions:

- from mineral soils due to land-use change to:
 - cropland,
 - settlements.

Direct N₂O emissions from drained organic soils (*equation 2.7 of the Wetlands* Supplement 2013)

 $N_{2}O - N_{OS} = [(F_{OS,CG,Temp} \cdot EF_{2CG,Temp}) + (F_{OS,F,Temp,NR} \cdot EF_{2F,Temp,NR})]; where$ $N_{2}O - N_{OS} = Annual \ direct \ N_{2}O - N \ emissions \ from \ managed \ | \ drained \ organic \ soil \ ,$ $kg \ N_{2}O - N \ yr^{-1}$ $F_{OS} = Annual \ area \ of \ managed \ | \ drained \ organic \ soils \ , ha \ . \ The \ subscripts \ CG \ , F \ , \ Temp \ , \ NR$ $refer \ to \ cropland \ and \ grassland \ , \ forest \ land \ , \ temperate \ and \ nutrient \ rich \ , \ respectively \ .$ $EF_{2} = Emission \ factor \ for \ N_{2}O \ emissions \ from \ drained \ | \ managed \ organic \ soils \ ,$ $kg \ N_{2}O - N \ ha^{-1} \ yr^{-1}$

Tier 1 N₂O emission factors for drained organic soils in all land-use categories

Land-use category	Climate/ vegetation zones	Emission factor (kg N ₂ O-N ha-1 yr-1)	95% Confidence interval	
Forest land, drained	Temperate	2.8	-0.57	6.1
Cropland, drained	Boreal and temperate	13	8.2	18
Grassland, deep- drained, nutrient-rich	Temperate	8.2	4.9	11
Peatland managed for extraction	Boreal and temperate	0.3	-0.03	0.64

Direct N₂O emissions due to land-use change are estimated by Tier 1 methodology (IPCC 2006)

 $N_{2}O-N_{N inputs} = F_{SOM} * EF_{1}; where$ $N_{2}O-N_{N inputs} - annual direct N_{2}O-N emissions from N inputs to managed$ soils, kg N₂O-N yr⁻¹ $EF_{1} - emission factor for N mineralised from mineral soil as a result of loss$ of soil carbon, kg N₂O-N(kg N)⁻¹

$$F_{SOM} = (\Delta C_{Mineral} * \frac{1}{R}) * 1000$$
; where

 F_{SOM} – the net annual amount of N mineralised in mineral soils as a result of loss of soil carbon throught chenge in land use or management, kg N. $\Delta C_{Mineral}$ – average annual loss of soil carbon for land – use type, tonnes C R-C: N ratio of the soil organic matter

 $EF_1 - 0.01 \text{ kg } N_2 \text{O} (\text{kg } \text{N})^{-1}$ R - 15

Indirect N₂O emissions

from mineral soils due to land-use change

(IPCC 2006)

 $N_{2}O_{(L)} - N = F_{SOM} * Frac_{LEACH-H} * EF_{5}; where$ $N_{2}O_{(L)} - N - annual amount of N_{2}O - N \text{ produced from leaching and runoff}$ of N additions to managed soils where leaching/runoff occurs, kg N_{2}O - N yr⁻¹
Frac_{LEACH-(H)} - fraction of all N added to/mineralised in managed soils in
regions where leaching/runoff occurs that is lost through leaching and runoff,
kg N (kg of N additions)⁻¹
EF_{5} - emission factor for N_{2}O emissions from leaching and runoff,
kg N_{2}O - N (kg N leached and runoff)⁻¹)
F_{SOM} = (\Delta C_{Mineral} * \frac{1}{R}) * 1000; where

 F_{SOM} – the net annual amount of N mineralised in mineral soils as a result of loss of soil carbon throught chenge in land use or management, kg N. $\Delta C_{Mineral}$ – average annual loss of soil carbon for land – use type, tonnes C R-C: N ratio of the soil organic matter

 $Frac_{LEACH-H} - 0.3 \text{ kg N} (\text{kg N})^{-1}$ $EF_5 - 0.0075 \text{ kg N}_2\text{O-N} (\text{kg N leached and run-off})^{-1}$

Thank you for attention!

