Norwegian Centre for Climate Services

Future climate scenarios for Norway

Professor I. Hanssen-Bauer, Head of NCCS; Presentation in Riga 20.05.2016

NCCS is a cooperation between:

Overview:

- Methods and data
- Scenarios and time slices
- Results
- Contact with key users
- Challenges

M-406 | 2015

Klima i Norge 2100

Kunnskapsgrunnlag for klimatilpasning oppdatert i 2015 NCCS report no. 2/2015

Redaktører I. Hanssen-Bauer, E.J. Førland, I. Haddeland, H. Hisdal, S. Mayer, A. Nesje, J.E.Ø. Nilsen, S. Sandven, A.B. Sandø, A. Sorteberg og B. Ådlandsvik Norwegian Meteorological Institute

Challenges

"Downscaling" of climate projections

- Temperature, precipitation and wind from Regional Climate Models (Euro CORDEX)
 - Applied only models with res. 12x12 km²
- Temperature: Also Statistical Downscaling
 Input directly from global models
- Sea level
 - Input directly from global models
 - Local effects (dynamical, gravitational, land rise) are included
 - A special report is written on this:

Sea Level Change for Norway

NCCS report no. 1/2015

RCM with 12x12 km²: 10 GCM/RCM-combinations

Institutt	Global klimamodell	Ensemble medlem	Regional klimamodell
Climate Limited-area Modelling Com-	CNRM-CER-	r1i1p1	CCLM4-8-17
munity (CLM-Community)	FACS-CM5		
Swedish Meteorological and Hydrologi-	CNRM-CER-	r1i1p1	RCA4
cal Institute (SMHI), Rossby Centre	FACS-CM5		
SMHI	IPSL-CM5A-MR	r1i1p1	RCA4
Royal Netherlands Meteorological Insti-	ICHEC-EC-EARTH	r1i1p1	RACMO22E
tute (KNMI)			
Danish Meteorological Institute (DMI)	ICHEC-EC-EARTH	r3i1p1	HIRHAM5
SMHI	ICHEC-EC-EARTH	r12i1p1	RCA4
CLM-Community	ICHEC-EC-EARTH	r12i1p1	CCLM4-8-17
SMHI	MPI-ESM-LR	r1i1p1	RCA4
CLM-Community	MPI-ESM-LR	r1i1p1	CCLM4-8-17
SMHI	MOHC-HadG-	r1i1p1	RCA4
	EM2-ES		

Post-processing of RCM-data

- Temperature and precipitation:
 - Daily values interpolated to $1 \times 1 \text{ km}^2$ grids
 - Bias adjustment (quantile mapping), using observationally based daily T- and R-maps with $1 \times 1 \text{ km}^2$ resolution
- Hydrological variables:
 - R & T from the 1 x 1 km² grids were used as input in a hydrological model
 - Runoff, evaporation, snow conditions, soil water etc. was calculated

Evaluation of distribution mapping based bias correction methods

speir Sorteberg12, Ingierd Haddeland3, Jan Erik Hauge and Wai K. Wong

Statistical downscaling and sea level

- Input directly from global models
- About 100 models available from IPCC AR5 were applied

Uncertainty

- For climatological and hydrological variables:
 - Median, 10 and 90 percentile for each scenario
- For sea level and storm surges:
 - Average, 5 and 95 percentile

Scenarios

- The Norwegian Environment Agency wanted all scenarios, and especially the high and the low
 - "Stortingsmelding 33", 2013: The high scenario should be applied when risks for impacts are assessed...
 - The low scenario is our ambition and should thus be included
- We argued
 - RCP4.5 and RCP6.0 would not give very different climate during the present century. We suggested RCP4.5
 - For RCP2.6 only T (from statistical downscaling) and sea level could be given with indications of uncertainty

Emission scenarios

Time slices

- The Norwegian Environment Agency wanted "the IPCC time-slices", and specifically a "near future" time-slice
- We argued
 - IPCC use 20-year slices, but for local climate we need to use 30-year slices
 - For the near future, natural variability will dominate over climate change, and for short-time planning purposes it is better to apply updated climate info based on observations
- Conclusion:
 - Scenarios: 2031-2060 and 2071-2100. Control: 1971-2000

Climat./Hydrol. time series

- Median, 10- and 90-percentiles
 - -Temperature, precipitation, run-off
 - -Annual and seasonal values
 - For the entire country
 - For regions defined by climatology/ hydrology
 - For counties

Climat./Hydrol. time slices

- Median, 10- and 90-percentiles:
 - -Variables: Same as for time series
 - In addition: Number of days with "heavy precipitation" (R > 99,5 percentile in control periode)
 - -The 99,5 percentile

Changes in temperature by region

Changes in precipitation by region

Climat./Hydrol. maps

- Change in median for medium and high scenario from 1971-2000 to 2071-2100
- Some also for 10- and 90-percentile
- Variables:
 - -Temperature, "warm days", growing season
 - -Precipitation, runoff
 - -Snow equivalent, snow season
 - "200-year flood"

Length of snow season Changes from 1971-2000 to 2071-2100

Average winter snow maximum Changes from 1971-2000 to 2071-2100

More water in the rivers in winter – less in summer

Scenarios & Time slices

Results

Challenge

Increased soil water deficit in summer

Sea level: Land rise is important in Norway

Time development

Sea-level

- Tables with median, 5- and 95percentile for a number of time-slices, and for RCP2.6, RCP4.5 and RCP8.5 are given on the web for all coastal municipalities.
- The Directorate for Civil Protection has published a report with recommended design values for storm surges for the period 2071-2100.

Contact with users

- The climate report was launched in a national "climate adaptation conference"
- Afterwards we have given more than 30 presentations of the report
- Results are presented on our web-pages
- We produce "climate profiles" for counties
- We have close contact with the Norwegian Environment Agency
- ...and with the Directorate for Civil Protection
- We cooperate with users in projects

Contact

Challenge

There is a knowledge gap

Some scientific challenges

- Practically all models have too zonal stormtracks over the North Atlantic. Can we compensate for that?
- How to pick the "best" global model in "our region"?
- Bias adjustment is crucial for many purposes.
 - How do we maintain the climate signal, autocorrelation, spatial correlation and physical connection between variables during this process?

Practical and institutional challenges

- Updating information:
 - General update after IPCC main reports
 - How do we treat "break through scientific news" between the main reports?
- Costs/finances:
 - NCCS is financed year by year: Difficult to plan!
 - Ambition: Most products should be free of charge
 Challenge: Limited resources and financing
- Many actors: Coordination is needed!

Thanks for your attention!

Meteorologisk institutt

Norges vassdrags- og energidirektorat