

IPCC Methodology for Estimation of Emissions of Fluorinated Greenhouse Gases from Products

Presentation On Training Seminar on QA/QC Procedures in Industrial Processes

Riga, May 21, 2015

Senior Adviser Torgrim Asphjell, Norwegian Environment Agency

Outline of Presentation

- Introduction
- Methodology in general
- IPCC 1996 Guidelines
- IPCC 2006 Guidelines
 - Aerosols and solvents
 - Foam blowing agents
 - Refrigeration and air conditioning
 - Fire protection
 - SF₆ from products

Fluorinated Greenhouse Gases

- Synthetic greenhouse gases covered by UNFCCC / Kyoto (and perhaps Montreal-protocol in the future)
- Most have high global warming potentials
- Some are very long lived (PFCs and SF₆). HFCs typically have a lifetime of a few years
- HFCs: Used as substitute for ozone-depleting substances (ODS) in refrigeration and other products
- PFCs: Also substitute, but main source is industrial production processes (not covered here)
- SF₆: Used as an isolator in electric power industry and in some other applications
- Global emissions are increasing rapidly

HFCs (and PFCs) as Substitutes for ODS

- Main application is refrigeration and air-conditioning
- Also used in fire suppression, aerosols, solvents, foam etc.
- Used as pure substances or blends
- Emissions from:
 - Production (by-product, fugitive)
 - During use (intended, leakage)
 - At decommissioning / end-of-life
- HFCs are traded products (no formation in processes), so potential emissions might be rather easy to predict
- Development of long-lived banks complicates the calculation of actual emissions

HFC - Methodology

IPCC 1996 Guidelines

- Used up till 2012
- Tier 1methodology:
 - Potential emissions (time lag not taken into account)
 - Tier 1a: Emissions = import in bulk (- export in bulk)
 - Tier 1b: Includes also gas in products
- Tier 2 methodology:
 - Calculates <u>actual emissions</u> for each individual chemical
 - Based on data on the flow of each gas on a sector or sub-sector level
 - Emissions estimated from consumption and emission characteristics of equipment and processes

IPCC 2006 Guidelines

In use from 2012

Application areas:

- Refrigeration and air conditioning
- Fire suppression
- Aerosols
- Solvents
- Foam
- Other
- Tier 1: <u>Actual</u> emissions on application level
- Tier 2: <u>Actual</u> emissions on <u>sub</u>-application level

Aerosols and solvents

- Prompt emissions (100% of chemical is emitted within 2 years)
- Activity data needed is quantity of each chemical sold as solvent in a particular year

Emissions =	Sale this year (t)* 0.5 (EF) + Sale previous year (t) * 0.5 (EF)
	(- quantity destroyed previous year)

Foam Blowing Agents

• Open cell foams: All HFCs are released immediately

Emissions = HFC used in manufacturing (t)

 Closed cell foams: Emissions during manufacturing, inuse phase and end-of life

Emissions =		Total HFC used in manufacturing (t) * First year loss (EF)
	+	HFK in foam in use (Bank, t) * annual loss (EF)
	+	End-of-life loss (t)
	-	Recovery and destruction (t)

Refrigeration and Air Conditioning

- Emissions during installation, use (leakage) and decomissioning
- Sub-applications:
 - Domestic refrigeration
 - Commercial refrigeration
 - Industrial processes
 - Transport refrigeration
 - Stationary air-conditioning
 - Mobile air-conditioning

Tier 1a/b Method (on Application level)

- Only applicable if this sector is not a key category
- Assumes 15% leakage rate (weighted average across all subapplications)
- Assumes 15 years equipment lifetime
- Some other assumptions also built into model
- Data needed:
 - Sale of specific refrigerant
 - Year of introduction of refrigerant
 - Growth rate in sales of new equipment
 - Import / export of equipment
- Back-calculates development of banks
- Models transition from new to mature market

Tier 1 Refrigeration Argentina - HFC-143a HFC-143a Current Year 2005 Data Used Use in current year - 2005 (tonnes) Here Production of HFC-143a 800 Imports in current Year 200 Exports in current year 0 Total new agent to domestic market 1000 Year of Introduction of HFC-143a 1998 Crowth Rate in New Equipment Sales 3.0%

Tier 1 Defaults	
Assumed Equipment Lifetime (years)	15
Emission Factor from installed base	15%
% of HFC-143a destroyed at End-of-Life	0%

Estimated data for earlier years	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
Production	0	0	81	167	259	355	458	566	680	800
Agent in Exports	0	0	0	0	0	0	0	0	0	0
Agent in Imports	0	0	20	42	65	89	114	141	170	200
Total New Agent in Domestic Equipment	0	0	102	209	323	444	572	707	850	1000
Agent in Retired Equipment	0	0	0	0	0	0	0	0	0	0
Destruction of agent in retired equipment	0	0	0	0	0	0	0	0	0	0
Release of agent from retired equipment	0	0	0	0	0	0	0	0	0	0
Bank	0	0	102	296	575	933	1365	1867	2437	3071
Emission	0	0	15	44	86	140	205	280	365	461

Tier 2 Method

- Calculation on sub-application level
- Data needed for sub-applications:
 - Refrigerant choice (type(s) of HFC)
 - Typical refrigerant charge
 - Equipment lifetime
 - Emission factor during operation (leakage rate)
 - Emission factor at servicing
 - Emission factor at end-of-life (depends on recovery)
- Derives the total stock of equipment for each subapplication -> refrigerant banks

Tier 2b Mass-balance Approach

- Particularly applicable to refrigeration and AC, but can lead to underestimates when equipment stocks are growing
- Quantity of gas used for refilling is used as a proxy for emissions, since emissions (leakage) from equipment is assumed to be replaced by new gas
- Adjust for gas used in new equipment (no emissions)
- Adjust for decomisioning (emissions or recovery)

Emissions =		Annual sales of new refrigerant (t)
	-	Total charge of new equipment (Bank, t)
	+	Original total Charge of retiring equipment (t)
	-	Amount of intentional destruction (t)

Tier 2a Emission-Factor Approach

- Emissions from each sub-application at year t calculated separately for:
 - Management of containers
 - Charging of refrigerant
 - Annual emissions from equipment banks (leakage and servicing)
 - Emissions at end of life

I CREEK
PALO A CONTRACTOR
The second se

	NORWEGIAN ENVIRONMENT AGENCY
--	------------------------------------

Emissions =		Emission containers (t)
	+	Emission charging new (t)
	+	Emission lifetime (t)
	+	Emission end-of-life (t)

TABLE 7.9 Estimates ¹ for charge, lifetime and emission factors for refrigeration and air-conditioning systems							
Sub-application	Charge (kg)	Lifetimes (years) ²	Emission F initial ch	factors (% of arge/year) ³	End-of-Life Emission (%)		
Factor in Equation	(M)	(d)	(k)	(X)	$(\eta_{rec,d})$	(p)	
			Initial Emission	Operation Emission	Recovery Efficiency ⁴	Initial Charge Remaining	
Domestic Refrigeration	$\begin{array}{c} 0.05 \leq M \leq \\ 0.5 \end{array}$	$12 \leq d \leq 20$	0.2 ≤ k ≤ 1	$0.1 \le x \le 0.5$	$0 < \eta_{rec,d} < 70$	0	
Stand-alone Commercial Applications	$0.2 \le M \le 6$	$10 \le d \le 15$	0.5≤k≤3	$1 \le x \le 15$	$0 < \eta_{rec,d} < 70$	0 < p < 80	
Medium & Large Commercial Refrigeration	50 ≤ M ≤ 2000	7≤d≤15	0.5≤k≤3	$10 \le x \le 35$	$0 < \eta_{rec,d} < 70$	50 100	
Transport Refrigeration	$3 \le M \le 8$	$6 \le d \le 9$	$0.2 \le k \le 1$	$15 \le x \le 50$	0 < η _{rec,d} < 70	0 < p < 50	
Industrial Refrigeration including Food Processing and Cold Storage	10 ≤ M ≤ 10,000	15 ≤ d ≤ 30	0.5≤k≤3	7≤x≤25	$0 < \eta_{rec,d} < 90$	50 100	
Chillers	10 ≤ M≤ 2000	$15 \leq d \leq 30$	$0.2 \le k \le 1$	$2 \le x \le 15$	0 < η _{rec,d} < 95	80 100	
Residential and Commercial A/C, including Heat Pumps	0.5 ≤ M≤ 100	$10 \le d \le 20$	$0.2 \le k \le 1$	$1 \le x \le 10$	$0\!<\!\eta_{\text{rec,d}}\!<\!80$	0 < p < 80	
Mobile A/C	0.5 ≤ M ≤ 1.5	$9 \leq d \leq 16$	$\begin{array}{c} 0.2 \leq k \leq \\ 0.5 \end{array}$	$10 \leq x \leq 20^5$	$\begin{array}{c} 0 < \eta_{rec,d} < \\ 50 \end{array}$	0	

^{2,3} Lower value for developed countries and higher value for developing countries

⁴ The lower threshold (0%) highlights that there is no recovery in some countries.

⁵ Schwarz and Harnisch (2003) estimates leakage rates of 5.3% to 10.6%; these rates apply only to second generation mobile air conditioners installed in European models in 1996 and beyond.

Tier 2a

Emissions all container	s =	Bulk gas market
	*	emission factor
Emission charging new	= *	Amount charged (sub-application) Emission factor
Emission lifetime	=	Amount banked (sub-application)
	*	Leakage rate (emission factor)
Emission end-of-life	=	Initial charge
	*	Residual charge (%)
	*	(1 - recovery efficiency at disposal)

Fire Protection

- Emissions calculated from bank and average leakage rate (emission factor)
- Adjustment for recovery release or loss
- Spreadsheat similar to refrigeration tier 1a/b can be used.

SF₆ from Electric Equipment

- Dealt with in IPCC 2006 Guidelines, Chapter 8
- Calculation principles for Gas insulated switchgear (GIS) similar with those used for refrigeration
- Tier 1: Default emission factors
- Tier 2: Country specific emission factor
- Tier 3: Hybrid method -Emissions by life cycle stage of equipment

SF₆ – Norwegian Reporting on Installation Level

- Bank of gas in equipment (Previous total + New Installations- Decomissioned Installations)
- Bank of gas in containers (Previous total + gas purchased +gas recovered - gas filled on equipment - gas delivered for destruction)
- Data on Import, export, sale and purchase of gas
- Mass balance approach: Emissions = refill (and compensate for change in stock, new equipment, decommissioning, production....)
- Validity of calculation can be checked over time: Can gas imported be accounted for?

Emissions in Norway - Total

Emissions in Norway – from Products

Additional Information

Report - Emissions from consumption of HFCs, PFCs and SF6 in Norway: <u>http://www.ssb.no/natur-og-miljo/artikler-og-</u> publikasjoner/emissions-from-consumption-of-hfcs-pfcs-and-sf6-in-norway

- Report Emissions of HFCs and PFCs from product use in Norway: <u>http://www.ssb.no/natur-og-miljo/artikler-og-</u> publikasjoner/emissions-of-hfcs-and-pfcs-from-product-use-in-norway
- Report The Norwegian Emission Inventory 2013: <u>http://www.ssb.no/natur-og-miljo/artikler-og-publikasjoner/the-norwegian-emission-inventory-2013</u>

