

Climate change policy evaluation in Norway and Latvia

SECTORAL POLICIES AND CLIMATE POLICY IN NORWAY

Berit Tennbakk PhD, Partner, THEMA Consulting Group

ABOUT CLIMATE TARGETS, POLICY MEASURES AND SECTORAL POLICIES

- Bottom-up approach to abatements / emission targets
 - Estimates of potentials and costs per sector and measure
 - Different approaches and considerable uncertainty
 - Sectoral targets and sector-specific policy measures
 - Unclear responsibilities and competencies
 - Possible conflicts with other sectoral policies?
- Top-down approach to abatements / emission targets
 - Identify and mitigate market failures
 - General policy measures
 - Such as quota markets or a general CO₂ tax puts a common price on emissions
 - More easily adjustable?
 - Sectoral targets commonly agreed (high-level)
 - Prioritized sectors and (shared) clear responsibilities

AGENDA

- Case studies Norway
- Challenges for climate policies
- Concluding remarks

EXAMPLE: STUDY OF SECTORAL ABATEMENT MEASURES IN NORWAY

- The Klimakur (2010) study had identified sectoral abatement measures
 - Some of the measures were found to be profitable under current policy and market conditions
- Question: Why are seemingly profitable measures not carried out?
 - Are costs misrepresented?
 - Do other regulations constitute barriers to implementation?
 - Should additional policies be implemented?
- Study of sectoral potentials and measures in Norway
 - Buildings energy efficiency
 - Industry conversion to renewable energy
 - Transportation public transportation and infrastructure

BUILDINGS – ENERGY EFFICIENCY THROUGH STRICTER BUILDING STANDARDS

BACKGROUND

- 26 % of energy consumption, 3 % of emissions
 - High share of electricity
- Abatement potential: 1-2 mill. tons
 - Uncertain estimates: Total area, new-build and refurbishment rates, purpose distribution of electricity use
 - Reference: Low growth in el consumption
 - Result of stricter building standards (2010)
- Stricter technical standards: Not primarily targeted at emissions – general energy efficiency improvements
 - High RES share in Norwegian electricity

FINDINGS

- Uncertain implementation
 - Applies primarily to new buildings
 - Rebound effects?
- Many non-quantified cost elements
 - Transaction costs
 - Time costs
 - Comfort costs
 - Lacking competence
 - High uncertainty: Too low discount factor?
 - Tax cost for public buildings
- Possible market failures
 - Owner/tenant issues: Energy labelling?
 - Information: Is available

A NOTE ON ENERGY EFFICIENCY POLICIES

UNCLEAR TARGET STRUCTURE

- Possible conflicting targets
 - Cut CO₂ emissions?
 - Improve or maintain security of supply?
 - Reduce electricity consumption during winter? (Energy? Maximum load?)
 - Grid costs? (Maximum load?)
 - Increase flexibility of energy demand?
 - Save nature?

EE contributes to several targets: Tradeoffs require evaluation principles

LACKING PRINCIPLES FOR EVALUATION

- What CO₂ prices should be used? and
- How should it be reflected in power price projections?
- Valuation of improved security of supply
- Are negative external effects (nature conservation) internalized in power prices and grid tariffs (via the licencing system)?
- Are emissions to air fully internalized in energy prices (fossil energy, bio energy and district heating)?
- Who is the responsible authority?

INDUSTRY – PRIVATE INVESTMENTS

BACKGROUND

- Detailed analyses of measures
- Individual industries
 - Pulp and paper; aluminium; ferro industry; petrochemicals; cement, lime, and leca production; mineral wool; food industry
- Specific measures mostly conversion from fossil to RES
 - Oil to district heating; Oil to bio energy; Sales of CO gas; Increased share of bioenergy; Reduced use of coke; ...

FINDINGS

- Underestimated costs?
 - Cost estimates based on averages or case studies: Could be large cost differences between installations
 - Large differences in discount factors welfare economics vs. business economics
 - Uncertainty: Profitability strongly influenced by assumed energy prices
- Some measures already implemented
- Things take time for good reasons
 - Measures are carried out in conjunction with other investments
 - Uncertainty puts an option value on waiting

TRANSPORTATION – PUBLIC INFRASTRUCTURE INVESTMENTS

BASICS

- Large source of emissions
- Potential: 3-4,5 mio tons
- Requires strong measures
- Partial analyses identify several extremely profitable measures
- While analyses of clusters of measures in transportation models hardly yields profitability at all
- The truth is probably somewhere inbetween

ASSESSMENT

- Estimates extremely uncertain
 - Private costs not properly taken into account
 - Particularly for motorists
 - Transfer from cars to public transportation and/or bicycles very uncertain
 - Coordinated transportation of goods
 - Missing internalization of external costs?
- Infrastructure measures require political decisions – and coordination
 - Decision processes, long-term perspective, different budgets
 - Local authorities may not take long-term health benefits into account, benefits which do not necessarily affect local budgets

AGENDA

- Case studies Norway
- Challenges for climate policies
- Concluding remarks

INCOMPLETE COST ESTIMATES – IT IS EASY TO GET IT WRONG

NON-QUANTIFIED COSTS

- Use of time
- Information gathering and processing
- Reduced comfort (energy efficiency)
- Management priorities and maintenance of competencies
- Uncertainty regarding the choice of measure and the impact of measures
- Missing investment, transportation and taxation costs: Transaction costs and costs during construction/implementation
- Benefit of control with own distribution of goods (with regards to coordination)

CHOICE OF DISCOUNT RATE/IRR

- Social vs private discount rates in Klimakur
 - Social: 5%
 - Private: 7% for buildings and transportation, 20% for industry
- No reason to assume imperfect capital markets (if so, a it is a general problem)
- Little evidence of 20% IRR in industry
- Regulatory risks? Future climate policies and abatement costs uncertain for both authorities and market actors
 - Implies a higher social discount rate
- Authorities should provide common guidelines – complex issue

SUBSTANTIAL UNCERTAINTIES

FUTURE PRICES

- The uncertainty is substantial
 - Of energy prices as well as CO₂ prices
- Changes affect social and private costbenefit estimates
- Long-term measures need robust profitability outlooks – in view of several possible scenarios for future climate policies
- The option value of postponing emission reduction investments could be substantial

 even if the measure is profitable based on current prices

POTENTIALS

- Rebound effects imply that net potentials may be smaller than estimated potentials
- Available data is incomplete for several measures
- Some cost estimates are based on averages or case studies – the variation can be substantial
- Sensitivity analysis of profitability
 - Profitability strongly dependent on prices for energy and carbon

MARKET FAILURE – EXISTENCE AND MITIGATION

MISSING INFORMATION

- Private actors need to be able to assess profitability: Potential for reduced energy consumption and possible conversion to other energy sources
- A lot of information seems to be available
 - Focus on energy and fuel costs in mass media
 - Several schemes for information dissemination
 - Enova, Energy labelling, etc.
- Conclusion
 - No strong evidence of missing information
 - Lacking implementation probably due to real private costs of information gathering and processing

PRINCIPAL – AGENT ISSUES

- One actor (the agent) acts on behalf of another (the principal)
 - They may have opposing interests
- Could explain why some measures in buildings are not carried out
 - Particularly between owner and tenant
- Conclusion
 - Mitigation by e.g., energy labelling and technical building standards

MARKET FAILURE – EXISTENCE AND MITIGATION

EXTERNAL COSTS

- Missing internalization of external costs (regulatory failure) creates deviation between social costs and private costs
- Several examples of incomplete or inconsistent excise taxes, e.g.,
 - No tax on emissions of particles from use of bio energy in buildings
 - Noise, abrasion, and accidents in transportation of goods
- Tax policies should to the extent possible reflect external costs and be consistent across sectors
 - But also need to take distributional effects into account

MARKET INTERVENTIONS

- Subsidies to renewable power generation (Elcertificates) yield too low power prices (power surplus)
 - Reduced incentives for
 - energy efficiency improvement,
 - conversion to district heating etc.,
 - But the electricity tax and the Elcertificate price draws in the opposite direction
- International commitments require increase in renewable energy production
 - Which yields power surplus and lower prices in Norway (the Nord Pool area)
- Lower power prices reflect the marginal value of the induced power surplus

MEASURES IN THE PUBLIC SECTOR

COORDINATION BETWEEN SECTORAL AUTHORITIES AND DIFFERENT LEVELS OF GOVERNMENT POSES A CHALLENGE

- Infrastructure for public transportation requires huge investments and yield small reductions in emissions
 - Very profitable as abatement measures because they yield other substantial benefits, e.g. health benefits
 - Costs and benefits are borne by different parts of the public sector
- Public measures with high benefits should in any case be closely assessed

AGENDA

- Case studies Norway
- Challenges for climate policies
- Concluding remarks

CONCLUDING REMARKS

- Three main reasons why seemingly profitable measures are not carried out
 - All relevant costs have not been quantified in the analysis
 - Some cost factors are very uncertain and changes over time
 - Market (or regulatory) failure
 - Decision structure in public administration
- Bottom-up approach to climate policies implies a number of challenges which jeopardize results
 - Sectoral targets
 - Rigid and inconsistent policies
 - Unclear allocation of responsibilities and conflicts of interest
- Top-down approach more flexible and robust
 - Markets change and adapt
 - Focus on removal of market failures

